

The Effect of Sacubitril/Valsartan on Supraventricular and Ventricular Arrhythmias in Patients with Heart Failure

Presentation by: Shayan Shojaei

Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran

Collaborators: Alireza Arzhangzadeh, MD; Mohammad Hossein Nikoo, MD; Majid Haghjoo, MD; Asma Mousavi, MD, MPH

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

Background

• Heart failure with reduced ejection fraction (HFrEF) is linked to a high burden of ventricular

and supraventricular arrhythmias

- Sacubitril/Valsartan (SV) therapy has been linked to lower rates of:
 - Mortality
 - Ventricular tachycardia (VT) and ventricular fibrillation (VF),
 - Usage of implantable cardioverter-defibrillator (ICD) therapy.

Background

- Frequent ICD interventions, including anti-tachycardia pacing (ATP) and shocks, are distressing for patients and increase healthcare costs; optimizing patient care.
- Gaps in current research: Limited data on the antiarrhythmic effects of SV in ICD/CRT-D patients
- Aim: Evaluate the impact of SV therapy on:
 - Arrhythmic event reduction
 - ICD/CRT-D therapy interventions
 - Echocardiographic changes

Materials and Methods

Study Design:

• Single-center, retrospective, longitudinal observational study at a heart failure outpatient clinic

Inclusion Criteria:

- HFrEF patients with left ventricular ejection fraction (LVEF) ≤40%
- ICD/CRT-D implantation with device interrogation every 3 months for 12 months before and after SV therapy
- On guideline-directed medical therapy (GDMT) including beta-blockers, MRAs, SGLT2 inhibitors before adding SV as the final component

Exclusion Criteria:

- Simultaneous ICD/CRT-D implantation & SV initiation
- New device implantation or modification during study
- NYHA class IV with unstable condition
- Refractory ventricular arrhythmias requiring ablation

Materials and Methods

Outcomes:

• Primary: VT, VF, VT/VF -which was stated for cumulative VT and VF incidences-, non-sustained VT (NsVT),

supraventricular tachycardia (SVT), and related interventions such as ATP and defibrillation shocks.

• Secondary: Changes in echocardiographic parameters, including left ventricular end-diastolic diameter (LVEDD) and

LVEF.

Statistical Analysis

Wilcoxon Signed-Rank Test for pre- vs. post-SV comparisons

Univariate & Multivariate Regression Analysis to evaluate variable relationships

Population Characteristics:

- 181 HFrEF patients completed ≥12-month follow-up:
 - Mean age: 63.4 ± 12 years
 - 36.5% male

Key Outcomes (Pre- vs Post-SV Therapy):

- Ventricular Arrhythmia Reduction:
 - VF: ↓ 53% (15 vs. 7, p=0.025)
 - VT + VF (VT/VF): ↓ 29% (24 vs. 17, p=0.047)
- ICD Therapy Reduction:
 - **ATP interventions:** \downarrow **28%** (14 vs. 10, p=0.043)
 - Shocks delivered: \downarrow 57% (14 vs. 6, p=0.041)
 - **ATP** + **Shocks:** ↓ **57%** (24 vs. 10, p=0.012)

- Echocardiographic Improvements:
 - LVEF: ↑ (29.95% → 31.66%, p=0.033)
 - **LVEDD:** \downarrow (61.39 mm \rightarrow 59.51 mm, p=0.047)

Variable	
Age (mean ± SD)	63.39 ± 12
Male (%)	36.5
NYHA (%)	
1	47
2	25.4
3	21.5
4	5.5
Smoking (%)	27.6
HTN (%)	39.8
DM (%)	30.9
Dyslipidemia (%)	38.1
CKD (%)	13.3
SBP (mean \pm SD)	116.79 ± 21.74
HR (mean ± SD)	74.5 ± 14.28
HF (%)	
NICMP	30.4
ICMP	69.6
Duration of HF (mean \pm SD) (years)	8.96 ± 6.79
Device (%)	
ICD	60.8
CRT-D	39.2
Previous MI (%)	68
Previous stroke (%)	6.1
CABG (%)	26.5
Atrial fibrillation (%)	2.8
Digoxin (%)	27.1
LVEF	29.95 ± 9.61
LVEDD	61.39 ± 9.56

Table 1. Baseline characteristics before initiation of Sacubitril/Valsartan

(CABG = coronary artery bypass grafting, CKD = chronic kidney disease, CRT-D = cardiac resynchronization therapy-device, DM = diabetes mellitus, HF = heart failure, HR = heart rate, HTN = hypertension, ICD = implantable cardioverter defibrillator, ICMP = ischemic cardiomyopathy, LVEDD = left ventricular end-diastolic diameter, LVEF = left ventricular ejection fraction, MI = myocardial infarction, NICMP = non-ischemic cardiomyopathy, NYHA = New York Heart Association, SBP = systolic blood pressure, SD = standardized deviation)

Regression Analysis:

- Diabetes Mellitus (DM) \rightarrow Lower VT incidence (p=0.047)
- ICD presence → Higher VT incidence (p=0.034)
- NYHA Class IV \rightarrow Higher VF incidence (p=0.014)
- VT/VF:
 - ICD presence \rightarrow Increased risk (p=0.023)
 - NYHA Class IV \rightarrow Lower incidence (p=0.030)

Male gender \rightarrow Lower LVEDD & shock treatment requirement (p=0.033 & p=0.044, respectively)

Outcome	Gender	Age	NHYA4	HTN	DM	ICD	Duration of HF disease (year)	Т
								10
SVT Standardized Coefficient	-0.063	0.032	0.005	0.065	-0 112	0.009	0.035	R
beta	0.005	0.052	0.005	0.005	0.112	0.009	0.055	0.1
P-value	0.439	0.686	0.947	0.430	0.161	0.910	0.659	a
VF								(DN
Standardized Coefficient								hyp
beta	-0.040	0.083	-0.194	-0.003	-0.026	0.101	-0.030	care
P-value								Nev
	0.617	0.285	0.014	0.972	0.734	0.184	0.697	пп tack
	0.027	0.057	0.111	0.007	0.150	0.1.61	0.004	ven
Standardized Coefficient	-0.027	0.057	-0.111	-0.007	-0.153	0.161	0.084	ven
Deta D voluo	0.722	0.456	0.152	0.020	0.047	0.024	0.270	non
VT/VF	0.732	0.430	0.132	0.930	0.047	0.034	0.270	sust
Standardized Coefficient	-0.037	0.079	-0.167	-0.007	-0.135	0.170	0.056	ven
beta	01007	01077	01107	0.007	0.122	011/0	01020	
P-value	0.631	0.296	0.030	0.932	0.077	0.023	0.456	
NSVT								
Standardized Coefficient	-0.088	-0.032	-0.063	0.069	-0.084	-0.050	0.091	
beta								
P-value	0.272	0.684	0.431	0.394	0.285	0.516	0.246	
ATP								
Standardized Coefficient	0.079	0.111	-0.012	0.096	-0.079	0.134	-0.036	
beta B volue	0.217	0.152	0.870	0.222	0.212	0.082	0 6 4 7	
r-value Shock	0.517	0.132	0.879	0.235	0.515	0.082	0.04/	
Standardized Coefficient	-0.162	0.116	-0.004	0.012	-0.057	0.115	0.030	
beta	0.102	0.110	0.004	0.012	0.037	0.115	0.050	
P-value	0.044	0.139	0.958	0.879	0.472	0.137	0.702	
LVEF								
Standardized Coefficient	-0.009	-0.036	0.102	-0.048	-0.010	0.022	-0.116	
beta								
p-value	0.913	0.649	0.203	0.557	0.902	0.777	0.141	

Table 2. Regression analysis

(DM = diabetes mellitus,, HTN = hypertension, ICD = implantable cardioverter defibrillator, NYHA = New York Heart Association, HTN = hypertension, ATP = antitachycardia pacing, VT = ventricular tachycardia, VF = ventricular fibrillation, NsVT = non-sustained VT, SVT = sustained VT, LVEF = left ventricular ejection fraction,)

Conclusion

- SV therapy significantly reduces ventricular arrhythmias (VT & VF) in HFrEF patients.
- Decreases the need for ICD interventions (ATP & shocks), indicating potential antiarrhythmic benefits
- Optimizes heart failure management by reducing both arrhythmic burden & device dependency
- Strengths:
 - Comprehensive analysis of multiple outcomes
 - Moderately long follow-up period
 - Adresses the gap in recent studies by evaluating HFrEF patients previously treated with ICT or CRT-D

Conclusion

- Limitations:
 - Observational and retrospective design:
 - Lack of a control group
 - Limited study populations
- Future research needed to:
 - Confirm findings in larger, diverse patient populations in RCT settings
 - Assess various clinical outcomes in longer follow-up periods
 - Determine ideal timing & patient selection for SV therapy in arrhythmia prevention

Take home message

 Sacubitril/Valsartan: More than just heart failure therapy—reducing arrhythmias, improving outcomes, and enhancing patient care.

Summary Graph

			٠		
-27	٠	T.		1	
		1		u	

 To investigate the add-on impact of Sacubitril/Valsartan (SV) therapy on the burden of Supraventricular and Ventricular Arrhythmias in Patients with Heart failure with reduced ejection fraction (HFrEF)

Design and Population

- Single cener, retrospective, longitudinal observational study, Between January 2020 to December 2023
- Adult HFrEF patients with ICD or CRT-D who were prescribed SV as an addition to their existing treatment
- 181 patients, Mean Age: 63.39±12, Male: 36.5%
- ICD: 60.8%, CRT-D: 39.2%

Primary outcomes 🛛 🥝

Change in the cumulative incidence of Ventricular tachycardia (VT) and Ventricular fibrillation (VF), total VT/VF events, non-sustained VT, supraventricular tachycardia, anti-tachycardi pacing and defibrillation shocks in 12 months follow-up after starting SV

	an internation of the second		
Outcome	Pre-SV therapy Episodes	Post-SV therapy Episodes	P-Value
Sustained ventricular tachycardia	6	11	0.185
Non-sustained ventricular tachycardia	29	32	0.480
Ventricular tachycardia	12	14	0.400
Ventricular fibrillation	15	7	0.025
Ventricular tachycardia + Ventricular fibrillation	24	17	0.047
Anti-tachycardia pacing	14	10	0.043
Shock	14	6	0.041
Anti-tachycardia pacing + Shock	24	10	0.012

Findings

Conclusion

SV therapy significantly reduces VTVF events and associated clinical interventions, indicating its potential to reduce the likelihood of lethal arrhythmic events and probable sudden cardiac death.

Acknowledgement

